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ABSTRACT

The rotating flows of von K"rnin and Bbdewadt are re-examined on

the basis of an extended boundary layer theory. It is found that the

oscillating flow constructed by Bbdewadt is due to underdetermined

boundary data. A complete set of boundary data is defined for both

problems in accordance with the practical flow models in consideration.

The new solutions, which are defined as integrals of extended ordinary

differential equationseliminate the acknowledged discrepancies of the

old solutions. Axisymmetric and plane stagnation flows with finite

initial velocities, which are of significance for the design of

piston machines, are constructed as special cases of von KArman's

problem.
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1. Introduction

The investigation 161 of the boundary layer along a flat surface pro-

duced by a potential vortex flow revealed an inconsistency of Prandtl's

boundary layer theory which is negligible only for almost parallel

boundary layers. This observation led to an important extension of the

classical boundary layer theory which maintains the elliptic character of

the flow problems considered. The new concept of the "limiting line of a

boundary layer" yielded a powerful key to an asymptotic integration of

the exact Navier-Stokes equations, which verified the extended boundary

layer theory.

The new method of integration may now be applied to the boundary

layer problems of von l~rmdn and Bodewadt [2, 3, 4, 5. Although in

both problems exact solutions of the Navier-Stokes equations have been

constructed, the integrals obtained do not represent the motions de-

sired in the practical applications. B6dewadt's solution describes a

rotating flow over a flat plate which is assumed to be asymptotic to

a solid-body vortex. However, the flow constructed possesses a source

and sink distribution of infinite velocity at large distances from

the axis of the vortex. These sources and sinks cause oscillations

in the flow which are generally recognized to be meaningltess in the

practical applications. Since the vortex motion produced by a ro-

tating disk in a fluid at rest (von Kirman's problem) satisfies the

same differential equations and ana!ogous boundary conditions as the

flow generated by a solid-body vortex over a flat plate, !3odewadt's
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solution of the latter problem disqualifies also von Karm~n's solution

of the former problem. Indeed, von K"rmn's solution possesses a sink

distribution of infinite velocity at large distances from the axis of

rotation. Because of the continuity of the flow, these sinks should

require a source distribution of infinite velocity at large distances

from the rotating disk. Furthermore, it may be mentioned that in both

problems the pressure terms should be related to all velocity compo-

nents (see equation (20)) and not only to one component. The pressure

is determined mainly by the axial component at the axis and by the radial

and tangential components far away from the axis.

It will be the subject of this paper to resolve the contradictions

in the problems of von Karman and Badewadt. New asymptotic solutions

will be defined as integrals of an extended set of ordinary differen-

tial equations, which are useful for practical applications. The

new solution of von KYrnan's problem yields as a special case the axi-

symmetric stagnation flow, which is produced by a homogeneous motion

normal to a flat surface of infinite dimensions. A simple adjustment

of the corresponding differential equations leads to the solution of

the analogous problem in plane flow. The classical exact solutions

of the Navier-Stokes equations describe, as is well known, the stag-

nation flows produced by nonhomogeneous motions of infinite initial

velocities. The difference between the classical and the new stag-

nation flows displays the significance of both solutions in practical

applications.

2
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The new results and the results obtained in '6 "1 demonstrate the

strength of the unifying principle applied, which is manifested in the

concept of the limiting line of a boundary layer. Furthermore, the re-

sults fully justify the extended boundary layer theory which was intro-

duced in F6] as a replacement of the generally inconsistent classical

boundary layer theory.

2. The Problems of von KArmAn and Bddewadt

Let (u,v,w) denote the velocity vector of an axisymmetric vortex flow

over a disk of infinite dimensions which is located at z = 0 in the

cylindrical coordinate system (r,cf,z). The flow with constant kinematic

viscosity i, constant density J, and variable pressure p is governed by

the Navier-Stokes equations

UUr + wuZ - v + V urr +_j= + uzj (1)

uv~v+u -1 + [',rr + (1)7 + v z (2)

U r+ i r 1I
r I - rr r + WzZJ (3)

(ru) r + (rw), = 0 . (4)

In von KArman's problem i5- the vortex motion is required to satisfy the

boundary conditions

z= 0 u =O, v= r, w = 0 (5)

Z u =O, v O. (6)

3
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In Bbdewadt's problem [51 the vortex flow is required to fulfill the

boundary conditions

z =0 u O, v =O, w = 0 (7)

z = rX u = 0, v = j r , (8)

The angular velocity w of the rotating disk in von KArmin's problem and

of the rotating fluid in Bbdewadt's problem is at one's disposal.

It is significant to mention that at this point von Karman and

Bbdewadt failed to examine the uniqueness of the solutions of their

problems. As Dirichlet's problem in potential theory shows, both

problems yield families of solutions which differ in their singular-

ities at r f  . Von Khrm~n and Bbdewadt enforced the uniqueness for

their problems by the well-known similarity assumptions. In return one

is forced to accept the unrealistic source and sink distributions at

r = - which are the consequences of such drastic simplifications of

the problems (see 1'6]).

In order to determine a solution of the Navier-Stokes equations

which describes the vortex motion produced by a rotating disk in a

fluid at rest, the following set of boundary conditions appears to be

complete and adequate ,see [6 ):

z = 0 u = 0, v = r, w = 0 (9)

z = u = 0, v = 0, w = (10)

z 01 u r

r *r

The solution of the Navier-Stokes equations, which describes the vortex

motion produced by a fluid rotating as a solid body over a flat plate at

4
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rest, appears to be determined by the following set of boundary data:

z 0 u =0, v O, w 0 (12)

z= : u =0, v r, w =w, (13)

to r 0 1 7u r(1W4)w

r -im I

In both problems the constant w,, determines the strength of the corres-

ponding singularity which is located at the point (r = -, z - 0).

Following the ideas of the derivations presented in r61, it is use-

ful to introduce the limiting line z - 6(r) of the boundary layer ad-

jacent to the surface z = 0. Provided a proper boundary layer exists,

its limiting line z = 5(r) will then be characterized by the approximate

data

z = 6(r) : u 0, v 0, w ;w=, (15)

in von K~rm~n's case, and

z = ;(r) : u - 0, v r, w ; w (16)

in Bodewadt's problem. The function ,(r) must be analytic and even.

Thus it must yield an expansion of the form

z = t(r) = a - br: + ... for r r, . (17)

Because of the boundary data at r = , (r) must decrease monotonically

to zero as r tends to infinity.

Assuming tentatively that such a limiting line exists, then it is

convenient to map the boundary layer 0 z (r) onto the parallel

strip 0 " 1 by the following similarity transformation:

r=r, z (18)rfr,, M ---

The conditions (9) through (16) suggest a search for solutions of the

5
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Navier-Stokes equations which are of the special form

u u)w rU(C), v - w rV(%) w = w,, W()(19)

-- W , ?I r2

SPo (() + . PI(). (20)

After carrying out these transformations one arrives at the following

reduced Navier-Stokes equations:

(1 +682  2 - (662 , ,) +6 w r6'

(21)
- -u - v2 + P2 -r6' Ci+" CPO

(1 + 6' 2 C2 )V - 66' + 66" - 26'2) + Z w - 6 cu (2

(22)

=2- UV

(1 + 6': 2 )W - ;(T + 66" - 26 ') + -(u w W

- -, . ) (23)

6
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2U + 0.
"- - = (24)

In these equations the primes and dots indicate the derivatives with

respect to r and ,'. If second order terms in r are neglected, one

arrives at the following set of ordinary differential equations by

applying the expansion (17):

+iU -LU 2  +P 2 - -b CPO"
a+L WbLU!YV' + .: a -' (25)

ii+ L8abC aw._ WV 2 21 UV (26)

W 4abt- - aw W= w
+ a± "--i (27)

2D

2U + w = 0 (28)
LUB,

With the conventions

U = (C), W = 2_aaG(CP - 4r-a H(r. (9

= - -'- = ab (30)

one obtains the equivalent system of ordinary differential equations:

G + 2,- (4C - RG)G + 7:ZR(6' - VS + P.. - 4F. a H) = 0 (31)

+ 2-z (4- - RG)V + 2 -'RGV 0 (32)

+ 2-z(2. - RG)6 + - -RA = 0 o (33)

7
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In these equations G(C) denotes the stream function of the continuity

equation (28). The constant parameter R may be called the Reynolds

number of the rotating motion. An appropriate justification for this

notation will be given later.

An evaluation of the mapping (18) shows that the two singular points

(r = ±. , z = 0) are stretched into the corresponding lines (r = ± -,

C 0). Hence, in the (r, C) plane the exact motions considered are

not determined by any boundary data at r = ± -. Therefore all boundary

data may be satisfied by solutions of the reduced equations (31), (32),

and (33). This observation leads to the following solutions:

.'or small values of r and for 0 1, the functions G("),

H(I), P,("), and V(,) represent approximate solutions of either von

K"rm~n's problem or of Bodewadt's problem, provided:

(A) G(.) and V( ) are solutions of the differential equations

+ 2o'(6C - RG)G + & 4 ((2C - RG)G + -2R(G - V2 + P) = 0 (34)

+ 2,;2 (4C - RG)V + 2:- RGV = 0

(35)

with either P,(') 0 and

0 : G = 0, , = 0, V = (36)

: G = G-,= finite, V = 0, (37)

or with P-(') 1 and

=0 : G =, = 0, V = 0 (38)

8
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G : G=G fi nite, V i 1 (39)

(B) H(,!) is determined by

H -G + 4
G -a R tG(t)dt , (40)Hffi " H  R '

where

H ' .Ft6(t)dt, (41)

(C) G(-) and V(') satisfy the conditions

= 1 : {(42)
for a common maximum

(D) the coefficients of the parabolic limiting line of the boundary

layer

= a - brz (43)

are determined by

a =a 7v 7R and b= -V (44)

where

w = 2, aG , (45)

(E) the accuracy parameter , is chosen sufficiently small.

9
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The justification of this solution is based upon the same principles

as the equivalent solution in [6]. An approximate solution of the

Navier-Stokes equations within the boundary layer is joined with an

exact solution outside the boundary layer in an almost analytic manner.

The admitted violation of the analyticity along the limiting line of

the boundary layer is controlled by the property (C). It may be empha-

sized that the property (C) does not confine the validity of the method

applied to flows with large Reynolds numbers.

The existence of a solution to the remaining problem posed above can

be illustrated in the same fashion as for the corresponding problem con-

sidered in r6i. A numerical method of solving the remaining boundary

value problem will be presented in a paper in preparation. Simultaneously,

numerical results will be displayed for various Reynolds numbers of both

problems.

It is significant to point out the difference between the new equations

(31) and (32) and von KirnAn's and B6dewadt's equations. The new terms

8 2.G and 8-'-V are obviously not negligible against the corresponding

terms 2,iRGG and 2- RGV within the boundary layer 0 --" : 1, as they

determine the character of the flow immediately at the surface = 0.

It is also not useful to delete these terms outside the boundary layer

because they guarantee the proper analytic continuations of the functions

G(-), ) GC),'G( ),and V( ) for 1, as is required by property (A).

These terms also confirm the conjecture formulated in '6 that the dis-

turbance of the primary velocity must decay across the boundary layer with

10
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logarithmic order two, if a distinctive boundary layer is to be expected.

The appearance of the terms 8&CG and 8qrV in the equations (31)

and (32) resolve evidently the discrepancies in the solutions of

von Khrm~n and Bbdewadt, which were pointed out in the introduction.

Their results are obtained by forcing the second coefficient b in

the expansion (17) to zero, in order to attain the necessary uniqueness

for their underdetermined problems. Exactly the same discrepancy arises

by applying the classical boundary layer assumptions. Thus, the

present problems fully justify the extended boundary layer theory

which was introduced in [6].

It may be mentioned that the solutions constructed depend only

upon the Reynolds number R at least up to the extent of the accuracy

maintained by the equations (34) and (35). Thus all vortex flows

with equal numbers R (see equation (30)) are similar to each other,

which justifies the term Reynolds number for R. This statement

follows through the introduction of the following new scales for all

variables concerned:

G =- 9 =- # .' = .4 (46)
A R (6

h h- (47)

Y'Rr ' " R:-

One obtains the transformed system

" + 2(6; - g)9 + 8r(27 - g)j + 2 - f: + h: = 0 (48)

11
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+ 2(4' - g)f + 2gf = 0 ,(49)

which must be integrated under the conditions

h, 0 , or h2 -R (50)

'1fi0: g = 0 0, f R , or f = 0 (51)

-flm: g =g finite, f = 0, or f - Re (52)

The similarity of two vortex flows with equal Reynolds numbers R is

in full agreement with empirical observations. This significant coin-

cidence indicates a certain relationship between the theoretical Reynolds

number (30) and the well-known common Reynolds number. In order to

discover this relationship it is helpful to examine the flow models of

finite dimensions which led to the boundary data (9), (10), and (11),

or (12), (13), and (14) of the approximate flow models of infinite di-

mens ions considered.

In von KArmAn's problem the vortex motion is produced by a rotating

disk in a viscous fluid in a high cylinder at rest (see Figure 1). A

special slit between the cylinder and the disk represents the sink which

is located at (r = , z = 0) in the model investigated. In B6dewadt's

problem the configuration is the same, but the cylinder is rotating

with the fluid over the disk at rest. Assuming that the friction

forces along the cylinder are negligible, then the corresponding

12
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vortex motions are roughly represented by the solutions constructed

above. If D denotes the diameter of the cylinder, then the comnmon

Reynolds number Re is found to be

Re= • (53)

An identification of the theoretical Reynolds number (30) with the

common Reynolds number (53) leads to the equality

a (54)

b 2)2/

This interpretation of the ratio a/b appears plausible provided the

accuracy of the solution constructed is sufficient to represent the

entire fluw for 0 r - D/2. In fact, the values r = + a/b determine

the intersections of the parabolic limiting line of the boundary

layer 8(r) with the disk z = 0. (see equation (43) and Figure 1).

3. Stagnation Flows

The problem considered by von Kirmin includes a stagnation flow,

which is of interest in the design of piston machines. In order to

display this special case it is useful to reconsider the flow model

which is sketched in Eigure I. By holding the cylinder and the disk

at rest and pressing a piston with the constant velocity ww into the

fluid, one produces a homogeneous flow which is disturbed by the

outflow of the fluid through the slit between the disk and the

cylinder.

If the diameter D of the cylinder is sufficiently large, then

the stagnation flow described can be identified as a special case of

13
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von KYrm~n's problem investigated above. Indeed, by taking

v 5 O, V 0, f 0, (55)

and replacing w by

W) = WM (56)

in all corresponding differential equations and boundary data of the

previous chapter, one arrives at the solution of the stagnation flow

problem under consideration.

Let n - I denote the axisymmetric case and n - 0 the corresponding

plane problem, then the equation (34) reduces to

C + - F(8 + 4n), - 2nRG G + 2(n + 1).-4 r2 - RG1 G + ' RG'- 0 (57)

which must be integrated under the boundary conditions

=0 : 0, 0, (58)

-l
= C - (59)

For the derivation of equation (57) the following conventions have been

used:

b p 2n-1u = - w. v' a G(C), w 2 wC(), -=-2 iH(-) (60)

z (r) a -br, Z
7, (r') (61)

w a
R - =ab (62)

1b

14
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The function 6(r) represents again the limiting line of the boundary

layer adjacent to the disk z - 0. The dimensionless value R may be

called the Reynolds number of the flow. The pressure is determined

by the equation

H = 2 n-G - + 2(n + 1d)
R r* tG(t)dt *(63)

The solution of the remaining problem is, of course, acceptable only

if the analogous condition (C) of the previous chapter is fulfilled.

Numerical results have been obtained for various Reynolds numbers.

They will be published in a paper in preparation.

The axisymmetric and plane stagnation flows investigated may be

compared with the corresponding classical stagnation flows past a flat

disk of infinite dimensions. In the present problems the fluid is kept

within walls normal to the disk. Thus the initially homogeneous flow

of finite velocity remains undisturbed almost throughout the entire

fluid. The disturbance caused by the outflow is therefore limited to

a thin boundary layer along the disk. In the classical stagnation flows

the walls normal to the disk are removed (see Figure 2). This causes a

nonhomogeneous potential flow past the disk which is disturbed by the

friction forces along the surface of the disk. The steady state of this

flow is maintained by an unbounded initial velocity at large distances

from the plate. This type of stagnation flow represents evidently a

model for viscous flows past blunt bodies with stagnation points.

15
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W (z - ) = finite

! 1

r

FIGURE 1 MODEL OF THE PRESENT FLOW PROBLEMS
* (Without piston for w 0 0, with piston for w - 0)

z

: 1

u(r= )

---------- - -- -

- r

FIGURE 2 MODEL OF THE CLASSICAL STAGNATION FLOW
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